A Transformation of N-Alkylated Anilines to N-Aryloxamates

by Xiao-He Zhu, Xin Zhang, Hong-Xing Xin, and Hong Yan*

College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China (e-mail: hongyan@bjut.edu.cn)

Transformation of *N*-alkylated anilines to *N*-aryloxamates was studied using ethyl 2-diazoacetoacetate as an alkylating agent and dirhodium tetraacetate $(Rh_2(OAc)_4)$ as the catalyst. The general applicability of the reaction as a synthetic method for *N*-aryloxamates was studied with a number of substituted *N*-alkylated anilines. The results revealed that the oxamate was formed by a radical reaction with molecular O₂ and Rh₂(OAc)₄ as initiator.

Introduction. – *N*-Aryloxamates (=2-(arylamino)-2-oxoacetates) have been broadly used as 1,2-dielectrophiles and selective inhibitors of the sperm-specific lactate dehydrogenase isozyme-C4 [1]. Therefore, a new synthetic method for the preparation of oxamates is of great interest. The existing methods for the synthesis of oxamates are carbonylation of amino aldehydes using ZrO_2 [2], reaction of NH₃ with diketones [3] and aniline with diethyl oxalate [4], oxidation of dithiooxamide [5], and hydrolysis of α -functionalized nitriles [6]. It is, therefore, an attractive method for the synthesis of oxamates.

From the *N*-alkylation of anilines **1**, using ethyl 2-diazoacetoacetate and $Rh_2(OAc)_4$, in addition to compounds **2**, *N*-aryloxamates **3** were obtained as main by-products. This product can be produced by the oxidation of **2** with O_2 in the presence of $Rh_2(OAc)_4$ in a likely radical process [7]. The formation of the oxamates **3** prompted us to examine the generality of the reaction from the perspective of using it as a synthetic method for the preparation of oxamates (*Scheme 1*).

Results and Discussion. – Compounds 2 were prepared by the *N*-alkylation of anilines with ethyl 2-diazoacetoacetate catalyzed by $Rh_2(OAc)_4$ in refluxing benzene. The resulting mixtures were filtered over silica gel, eluting with AcOH/petroleum ether, and significant amounts of by-products 3 were always obtained, sometimes in equal amounts as 2. The transformation of 2 to *N*-aryloxamates 3 occured *via* oxidation of 2 in the presence of $Rh_2(OAc)_4$. Assuming that O_2 participates in the reaction leading to 3, the preparation of 3a was studied under different gas-bubbling conditions to demonstrate the role of molecular O_2 in the reaction. The test reactions were performed with 2a and $Rh_2(OAc)_4$ in refluxing benzene only, and with air, O_2 , or N_2 flow rate of 2 l/h. The results are compiled in *Table 1*. The yield of 3a was 18.1% in refluxing benzene, but it significantly increased to 41.7% in the presence of air. The

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Transformation of N-Alkylated Anilines to N-Aryloxamates

yield further increased to 49.4% in an atmosphere of O_2 , and no oxamate formation was observed in an atmosphere of N_2 . The more molecular O_2 with the opportunity to participate in the reaction was present, the more **3a** was formed, indicating that molecular O_2 was an essential reagent in the reaction.

Table 1. Effect of Ous supply on the field of Sa	Table 1.	Effect of	Gas	Supply	on the	Yield	of 3a a`
---	----------	-----------	-----	--------	--------	-------	-----------------

Entry	Gas additive	Yield [%]	
1	_	18.1	
2	Air	41.7	
3	O_2	49.4	
4	$\overline{N_2}$	Nil	
^a) Compound 2a (2 mmc	ol), $Rh_2(OAc)_4$ (0.005 mmol); and dry benzene (10) ml) reflux, gas bubbling (2 l/	

h).

To confirm that $Rh_2(OAc)_4$ participated in the transformation of **2a** to **3a**, **2a** was reacted in the presence of molecular O_2 in refluxing benzene without $Rh_2(OAc)_4$ for 24 h. Interestingly, **3a** was not detected in the reaction mixture. This result revealed that $Rh_2(OAc)_4$ was necessary for the transformation of *N*-alkylanilines to *N*-aryloxamates.

Next, the reaction was performed with different amounts of $Rh_2(OAc)_4$. The results are collected in *Table 2*. When the amount of $Rh_2(OAc)_4$ was reduced to 2.5×10^{-4} equiv., the yields of **3a** remained constant at 49%. Obviously, $Rh_2(OAc)_4$ acted as the initiator in this free-radical reaction [7], and it cannot be replaced by other radical initiators, such as azobiisobutyronitrile (AIBN) or I₂.

The synthesis of **3a** was simplified by introducing O_2 into the mixture of aniline **1a**, ethyl 2-diazoacetoacetate, and $Rh_2(OAc)_4$ in benzene. The resulting mixture was heated to reflux, until **1a** was converted into **3a**, as monitored by TLC, in 39.4% yield. The general applicabelity of the reaction as a synthetic method for the preparation of *N*-aryloxamates was further studied with a number of substituted anilines under the same conditions (*i.e.*, 2.5×10^{-4} equiv. of $Rh_2(OAc)_4$ in the presence of molecular O_2 (2 l/h)). The results are compiled in *Table 3*.

HELVETICA CHIMICA ACTA – Vol. 96 (2013)

Table 2. Effect of the Amount of $Rh_2(OAc)_4$ on the Yield of $3a^a$)

Entry	Equiv.	Yield [%]	
1	$2.5 imes 10^{-3}$	49.4	
2	$2.5 imes10^{-4}$	49.3	
3	$2.5 imes10^{-5}$	38.6	

^a) Compound **2a** (2 mmol), dry benzene (10 ml), and $Rh_2(OAc)_4$ (0.005 mmol); reflux, 0.5 h, O_2 bubbling (2 l/h).

Table 3. Yields of Oxamates 3a-3k^a)

Entry	Product	Х	Time [min]	Yield [%]		
				This work	Conventional method	
1	3a [4]	Н	80	39.4	64	
2	3b [4]	4-Me	100	45.1	35	
3	3c [4]	3-Me	100	47.6	37	
4	3d [4]	$4-NO_2$	60	66.8	41	
5	3e [4]	3-NO ₂	60	64.0	64	
6	3f [4]	4-MeO	100	49.3	88	
7	3 g [4]	4-Cl	70	68.4	75	
8	3h [4]	3-Cl	70	71.6	87	
9	3i [8]	4-EtOCO	70	69.2	54	
10	3j [9]	$2,5-F_{2}$	50	65.6	63	
11	3k [10]	$3.5 - (CF_3)_2$	60	68.7	59	

^a) **1** Compound (2 mmol), ethyl 2-diazoacetoacetate (5.0 mmol), dry benzene (10 ml), and $Rh_2(OAc)_4$ (2.5 × 10⁻⁴ equiv.); reflux, O₂ bubbling (2 l/h).

This method afforded **3** in less than 100 min at reflux temperature, whereas conventional methods [4] required temperatures of 115° and times of up to 5.5 h with aniline and diethyl oxalate. The efficiency of the preparation of **3b** and **3c** was also increased, as the yield was 45.1 and 47.6% by the reported method, and 35 and 37% for the conventional method, respectively. However, the yield of **3f** (49.3%) was lower than the yield of 88% reported in [4]. The explanation of the lower yields needs further studies.

The mechanism of the transformation of **2** to **3** is presumed to be an oxidation of **2** by O_2 via a free-radical mechanism, as outlined in *Scheme 2*, and similar to the 2,3cleavage of acetylacetone to acetate and methylglyoxal (=2-oxopropanal [11]. The transition-metal ions play a key role in oxygen activation, to form a transition metal– O_2 complex and a free peroxide radical [12]. The cat.OO[•] abstracts H[•] from **2** to give cat.OOH, leading to a C-centered radical **2**'. The addition of O_2 gives **2**'', which abstracts H[•] from cat.OOH or **2** to generate hydroperoxide **3**'. Finally, **3**' undergoes nucleophilic attack of the HO group to the adjacent C=O group to form **3**.

Scheme 2. Proposed Mechanism of Transformation of 2 to 3

Conclusions. – The transformation of *N*-alkylanilines into *N*-aryloxamates was accomplished in the presence of $Rh_2(OAc)_4$ using molecular O_2 . The general applicability of the reaction as a synthetic method for *N*-aryloxamates was evaluated with a series of substituted anilines. The potential application of the reaction as a synthetic method for oxamates is remarkable and may serve as an alternative in the synthesis of oxamates.

This work was financially supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (No. 2012ZX10001007-008-002) and Scientific and Technological Innovation Platform of Beijing Local Colleges and Universities (No. JJ015790201202).

Experimental Part

General. All chemicals and reagents were purchased from commercial sources and were used without further purification. All reactions were monitored by TLC (silica-gel plates; Merck 60 F_{254}). Column chromatography (CC): silica gel (Merck, 230–400 mesh). M.p.: X-5 apparatus; uncorrected. NMR Spectra: Bruker-Avance II400 instrument (400 MHz) in CDCl₃; δ rel. to Me₄Si, in ppm, J in Hz.

General Procedure for the Preparation of **3**. A mixture of aniline **1** (2.0 mmol), $Rh_2(OAc)_4$ (0.005 mmol), and 10 ml of dry benzene was heated to reflux. A soln. of ethyl 2-diazoacetoacetate [13] (5.0 mmol) in 10 ml of benzene was added dropwise to the refluxing mixture in the presence of molecular O₂, which was bubbled into the mixture at a rate of 2 l/h. The resulting mixture was heated at reflux temperature until **1** was consumed. After cooling to r.t., the volatiles were removed *in vacuo*, and the residue was purified by CC (petroleum ether/AcOEt) to give **3** in yields in the range of 39.4–69.2%.

Ethyl 2-Oxo-2-(phenylamino)acetate (**3a**) [4]. Yield: 221.0 mg (39.4%). Colorless solid. M.p. 71–72°. ¹H-NMR: 1.35 (t, J = 7.2, Me); 4.35 (q, J = 7.2, CH₂); 7.17–7.23 (m, 3 arom. H); 7.48–7.52 (m, 2 arom. H); 8.85 (s, NH).

Ethyl 2-[(4-Methylphenyl)amino]-2-oxoacetate (**3b**) [4]. Yield: 186.9 mg (45.1%). Colorless solid. M.p. $69-71^{\circ}$. ¹H-NMR: 1.43 (*t*, *J* = 7.2, Me); 2.34 (*s*, Me); 4.42 (*q*, *J* = 7.2, CH₂); 7.18 (*d*, *J* = 8.0, 2 arom. H); 7.53 (*d*, *J* = 8.0, 2 arom. H); 8.86 (*s*, NH).

Ethyl 2-[(3-Methylphenyl)amino]-2-oxoacetate (**3c**) [4]. Yield: 197.3 mg (47.6%). Colorless solid. M.p. $58-59^{\circ}$. ¹H-NMR: 1.42 (t, J = 7.2, Me); 2.36 (s, Me); 4.41 (q, J = 7.2, CH₂); 7.00–7.45 (m, 4 arom. H); 9.38 (s, NH).

Ethyl 2-[(4-Nitrophenyl)amino]-2-oxoacetate (**3d**) [4]. Yield: 318.2 mg (66.8%). Colorless solid. M.p. 144–145°. ¹H-NMR: 1.44 (t, J = 7.2, Me); 4.45 (q, J = 7.2, CH₂); 7.86 (d, J = 8.8, 2 arom. H); 8.27 (d, J = 8.8, 2 arom. H); 9.27 (s, NH).

Ethyl 2-[(3-Nitrophenyl)amino]-2-oxoacetate (**3e**) [4]. Yield: 304.9 mg (64.0%). Colorless solid. M.p. 96–98°. ¹H-NMR: 1.45 (t, J = 7.2, Me); 4.60 (q, J = 7.2, CH₂); 7.56–7.60 (m, 1 arom. H); 8.05–8.10 (m, 2 arom. H); 8.53 (s, 1 arom. H); 9.19 (s, NH).

Ethyl 2-[(4-Methoxyphenyl)amino]-2-oxoacetate (**3f**) [4]. Yield: 264.7 mg (49.3%). Colorless solid. M.p. 112–113°. ¹H-NMR: 1.40 (t, J = 7.2, Me); 3.75 (s, Me); 4.35 (q, J = 7.2, CH₂); 6.85 (dd, J = 8.4, 2 arom. H); 7.50 (dd, J = 8.4, 2 arom. H); 8.90 (s, NH).

Ethyl 2-[(4-Chlorophenyl)amino]-2-oxoacetate (**3g**) [4]. Yield: 356.9 mg (68.4%). Colorless solid. M.p. 146–148°. ¹H-NMR: 1.41 (t, J = 7.2, Me); 4.41 (q, J = 7.2, CH₂); 7.34 (d, J = 8.8, 2 arom. H); 7.61 (d, J = 8.8, 2 arom. H); 8.95 (s, NH).

Ethyl 2-[(3-Chlorophenyl)amino]-2-oxoacetate (**3h**) [4]. Yield: 371.5 mg (71.6%). Colorless solid. M.p. 110°. ¹H-NMR: 1.50 (*t*, *J* = 7.2, Me); 4.45 (*q*, *J* = 7.2, CH₂); 7.28 – 7.31 (*m*, 1 arom. H); 7.34 – 7.36 (*m*, 1 arom. H); 7.52 – 7.53 (*m*, 1 arom. H); 7.75 (*s*, 1 arom. H); 9.10 (*s*, NH).

Ethyl 4-[(2-Ethoxy-1,2-dioxoethyl)amino]benzoate (**3i**) [8]. Yield: 367.1 mg (69.2%). Colorless solid. M.p. $130-131^{\circ}$. ¹H-NMR: 1.40 (*t*, 3 H, *J* = 7.2, Me); 1.44 (*t*, *J* = 7.2, Me); 4.37 (*q*, *J* = 7.2, CH₂); 4.43 (*q*, *J* = 7.2, CH₂); 7.73 (*d*, *J* = 8.8, 2 arom. H); 8.06 (*d*, *J* = 8.8, 2 arom. H); 9.05 (*s*, NH).

Ethyl 2-[(2,5-Difluorophenyl)amino]-2-oxoacetate (**3j**) [9]. Yield: 291.5 mg (65.6%). Colorless solid. M.p. 44.5 – 45.3°. ¹H-NMR: 1.46 (*t*, *J* = 7.2, Me); 4.46 (*q*, *J* = 7.2, CH₂); 6.21–6.29 (*m*, 2 arom. H); 7.11–7.13 (*m*, 1 arom. H); 8.21–8.23 (*m*, 1 arom. H); 9.15 (*s*, NH).

Ethyl 2-[[3,5-Bis(trifluoromethyl]phenyl]amino]-2-oxoacetate (**3k**) [10]. Yield: 303.9 mg (68.7%). Colorless solid. M.p. 88–90°. ¹H-NMR: 1.45 (t, J = 7.2, Me); 4.35 ($q, J = 7.2, CH_2$); 7.41 (s, 1 arom. H); 7.87 (s, 2 arom. H); 9.11 (s, NH).

REFERENCES

- F. Berrée, G. Michelot, M. Le Corre, *Tetrahedron Lett.* **1998**, *39*, 8275; C. Wong, L. Rodríguez-Páez, B. N. Nogueda, A. Pérez, I. Baeza, *Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol.* **1997**, *1343*, 16.
- [2] R. Saladino, V. Neri, C. Crestini, G. Costanzo, M. Graciotti, E. Di Mauro, J. Mol. Evol. 2010, 71, 100.
- [3] J. Marra, M. R. Goehring, J. Perez, L. Stasaitis, R. Y. Liu, WO Pat. WO2004111011, 2004; R. Wilmes, M. Winnewisser, J. Labelled Compd. Radiopharm. 1992, 31, 1037.
- [4] R. J. Cremlyn, J. Chem. Eng. Data 1974, 19, 288.
- [5] M. Nasr-Esfahani, M. Montazerozohori, M. Moghadam, I. Mohammadpoor-Baltork, S. Moradi, J. Sulfur Chem. 2009, 30, 17; M. Nasr-Esfahani, M. Moghadam, I. Mohammadpoor-Baltork, M. H. Boostanifar, Phosphorus, Sulfur, Silicon Relat. Elem. 2009, 184, 141; I. Mohammadpoor-Baltork, M. M. Sadeghi, K. Esmayilpour, Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 61.
- [6] J. M. Photis, *Tetrahedron Lett.* 1980, 21, 3539; U. Drehmann, H. J. Born, J. Prakt. Chem. (Leipzig) 1957, 5, 200; J. Anatol, A. Medete, Synthesis 1971, 538.
- [7] J. Y. He, X. Q. Song, H. Yan, R. G. Zhong, J. Heterocyclic Chem. 2012, 49, 1357.
- [8] P. A. Petyunin, A. V. Storozheva, Zh. Obshch. Khim. 1962, 32, 1395.
- [9] V. Nair, V. Sheeba, J. Org. Chem. 1999, 64, 6898.

- [10] J. J. Batch, K. P. Parry, C. F. Rowe, D. K. Lawrence, M. J. Brown, DE19782819878 19780505, 1978.
- [11] G. Straganz, L. Brecker, H.-J. Weber, W. Steiner, D. W. Ribbons, Biochem. Biophys. Res. Commun. 2002, 297, 232.
- [12] T. D. H. Bugg, *Tetrahedron* 2003, 59, 7075; N. W. Aboelella, S. V. Kryatov, B. F. Gherman, W. W. Brennessel, V. G. Young, R. Sarangi, E. V. Rybak-Akimova, K. O. Hodgson, B. Hedman, E. I. Solomon, C. J. Cramer, W. B. Tolman, *J. Am. Chem. Soc.* 2004, 126, 16896.
- [13] J. C. Lee, J. Y. Yuk, Synth. Commun. 1995, 25, 1511.

Received November 6, 2012